

Capturing the Long-Sought Small-Bandgap Endohedral Fullerene Sc₃N@C₈₂ with Low Kinetic Stability

Tao Wei,[†] Song Wang,[†] Fupin Liu,[†] Yuanzhi Tan,[‡] Xianjun Zhu,[†] Suyuan Xie,[‡] and Shangfeng Yang^{*,†}

[†]Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China

[‡]State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Supporting Information

ABSTRACT: The long-sought small-bandgap endohedral fullerene $Sc_3N@C_{82}$ with low kinetic stability has been successfully synthesized and isolated for the first time, for which the molecular structure has been unambiguously determined as $Sc_3N@C_{82}$ - $C_{2\nu}(39718)$ by single crystal X-ray diffraction. The C_{82} - $C_{2\nu}(39718)$ (or labeled as C_{82} - $C_{2\nu}(9)$ according to the conventional numbering of the isolated pentagon rule (IPR) isomers based on the Fowler–Monolopoulos spiral algorithm) isomeric cage of $Sc_3N@C_{82}$ agrees well with its most stable isomer previously predicted by DFT computations and is dramatically different to those of the reported counterparts $M_3N@C_{82}$ – $C_s(39663)$ (M = Gd, Y) based on a non-IPR C_{82} isomer, revealing the strong dependence of the cage isomeric structure on the size of the encaged metal for C_{82} -based metal nitride clusterfullerenes (NCFs).

■ INTRODUCTION

Endohedral fullerenes are a special class of fullerenes with versatile species such as atoms, ions, or clusters encaged in their hollow, and exhibit a variety of fascinating electronic and physical/chemical properties which promise their potential applications in electronics and biomedicines, etc.¹ Among all endohedral fullerenes known so far, C82-based endohedral fullerenes are quite unique because not only La@C₈₂ represent the first stable and separable endohedal fullerene² but also C_{82} cage becomes the most intensively studied and popular cage of endohedral fullerenes.^{3–5} In addition to the conventional monoand dimetallofullerenes, C₈₂ cages have been also found to encapsulate different metal clusters such as nitride, carbide, sulfide, and cyanide to form clusterfullerenes.⁴⁻⁷ In particular, $Sc_3N@C_{82}$ as an intriguing member of the scandium (Sc)-metal nitride clusterfullerenes (NCF) family has been detected by mass spectroscopy by different groups focusing on study of other Sc-based endohedral fullerenes,^{8,9} but has never been isolated. This is dramatically different to Sc₃N@C₈₀ which is the first NCF discovered in 1999 (ref 10) and has been extensively studied due to its highest yield among all endohedral fullerenes isolated up to now.^{1,7} The difficulty on the isolation of Sc3N@C82 is interpreted by its low kinetic stability arising from its small bandgap, which was computed to be 0.83 eV for the most stable isomer C_{82} - $C_{2\nu}(39718)$ (or labeled as C_{82} - $C_{2\nu}(9)$ according to the conventional numbering of the isolated pentagon rule (IPR) isomers based on the Fowler-Monolopoulos spiral algorithm¹¹) predicted by DFT computations.¹²

Contrarily, for C_{82} -NCFs based on other rare earth metals such as yttrium (Y),¹³ the computed bandgap based on the experimentally determined isomer C_{82} - C_s (39663) was 1.51 eV.¹² Accordingly, it has been claimed in several theoretical studies that the low kinetic stability of Sc₃N@C₈₂ precluded its isolation.^{9,12,14} Thus, it appears quite challenging to isolate the long-sought small-bandgap Sc₃N@C₈₂.

Herein, we report the synthesis of $Sc_3N@C_{82}$ by a modified Krätschmer–Huffman DC arc discharge method and its first successful isolation by three-step HPLC, accomplishing its unambiguous structural elucidation by single crystal X-ray diffraction. We further characterized the peculiar electronic property of $Sc_3N@C_{82}$ by UV–vis–NIR spectroscopy and electrochemistry.

RESULT AND DISCUSSION

Synthesis and Isolation of Sc₃N@C₈₂. Sc₃N@C₈₂ was synthesized by a modified Krätschmer–Huffman DC-arc discharging method using a mixture of Sc₂O₃ and graphite (molar ratio of Sc/C = 1:15) as the raw material with the addition of 400 mbar He and 10 mbar N₂ gas.¹⁵ Several known Sc₃N@C_{2n} (2n = 68, 70, 78, 80) NCFs were also produced simultaneously and provide bases for comparison.^{16–19} Isolation of Sc₃N@C₈₂ was performed by three-step high performance liquid chromatography (HPLC) (see Supporting Information

Received:January 9, 2015Published:February 7, 2015

S1 for details). The high purity of the isolated $Sc_3N@C_{82}$ is confirmed by laser desorption time-of-flight (LD-TOF) mass spectroscopic (MS) analysis, which further confirms its proposed chemical formula based on the good agreement of the measured isotope distribution with the calculated one (see Supporting Information, Figure S2). The yield of $Sc_3N@C_{82}$ is estimated to be only 0.62% of that of $Sc_3N@C_{80}$ (I, I_h) but 3.4 times higher than that of $Sc_3N@C_{70}-C_{2\nu}(7854)$ which is the latest member of Sc-NCF family isolated by us in 2007 (see Supporting Information S2).^{10,17} Note that, in our initial attempt to synthesize $Sc_3N@C_{82}$ in a fullerene generator with a large-volume vacuum chamber (~0.048 m³), Sc₃N@C₈₂ was detected in the extract mixture by mass spectroscopy but disappeared in the second-step HPLC isolation, suggesting its low stability as concluded previously in the literature.^{8,9,12} After changing to a smaller-volume (~0.017 m³) fullerene generator, we succeeded in collecting a macroscopic amount of pure Sc₃N@C₈₂ after the three-step HPLC isolation, suggesting a dramatically improved yield of Sc3N@C82 in our smaller-volume fullerene generator, presumably due to a more suitable temperature gradient for its formation.

Molecular Structure of $Sc_3N@C_{82}$ Determined by Single Crystal X-ray Diffraction. The molecular structure of $Sc_3N@C_{82}$ was determined unambiguously as $Sc_3N@C_{82}$ · $C_{2\nu}(39718)$ by an X-ray crystallographic study. A high-quality cubic cocrystal of $Sc_3N@C_{82}$ with Ni^{II}(OEP) (OEP = octaethylporphyrin) with a chemical form of $Sc_3N@C_{82}$ · Ni^{II}(OEP)· $2C_6H_6$ was obtained by diffusion of a carbon disulfide solution of $Sc_3N@C_{82}$ into a benzene solution of Ni^{II}(OEP) and used for X-ray crystallographic study.^{3,6,10,20–23} Figure 1 shows the relative orientations of the $Sc_3N@C_{82}$ -

Figure 1. Drawing showing the orientation of endohedral fullerene with respect to nickel porphyrin in $Sc_3N@C_{82}-C_{2\nu}(39718)\cdot Ni^{II}(OEP) \cdot 2C_6H_6$ with 30% thermal ellipsoids. Only one orientation of the fullerene cage (0.50 occupancy) and the major site of Sc_3N are shown. C, N, Sc, and Ni atoms are shown in gray, blue, red and purple, respectively. The solvent molecule (benzene), another orientation of the fullerene cage, the minor site of Sc_3N , and hydrogen atoms of the porphyrin are all omitted for clarity.

 $C_{2\nu}(39718)$ and the Ni^{II}(OEP) molecules in Sc₃N@C₈₂- $C_{2\nu}(39718)$ ·Ni^{II}(OEP)·2C₆H₆. Only one orientation of the fullerene cage together with the major site of the Sc₃N cluster was shown in the drawing for clarity. Like most of the previously reported cocrystals of versatile NCFs with Ni^{II}(OEP),²¹⁻²³ the Sc₃N@C₈₂-C_{2\nu}(39718)·Ni^{II}(OEP)·2C₆H₆ cocrystal was monoclinic with a space group of C2/m. Thus, its asymmetric unit cell contains a half of the Ni^{II}(OEP) molecule and two halves of the $C_{2\nu}(39718)$ - C_{82} cage. An intact C_{82} cage can be finally formed by combining one of the halves of the fullerene cage with the mirror image of the other. Accordingly, two orientations of the carbon cage with the same occupancies of 0.5 can be inferred. The fully ordered Ni^{II}(OEP) molecule resides on the crystallographic mirror plane that bisects N2, Ni, and N4, so an entire Ni^{II}(OEP) molecule can be formed by combining the existing half molecule with its mirror image. The shortest distance between the carbon cage involving C76 and the nickel ion in Ni^{II}(OEP) is 2.972(2) Å, which is comparable to those reported for other cocrystals of NCFs and Ni^{II}(OEP).²³

Inside the C_{82} - $C_{2\nu}(39718)$ cage, which follows IPR and can be labeled as C_{82} - $C_{2\nu}(9)$ according to the Fowler–Monolopoulos spiral algorithm,¹¹ the encaged Sc₃N cluster shows disorder with two sites, while the central nitrogen atom is fully ordered which is situated on the mirror plane of the entire molecule. This case is similar to that of Sc₃N@C₈₀ (I, I_h) but obviously different from that of Sc₃N@C₆₈- D_3 (6140) with as many as 13 Sc sites.^{10,16} For the major site of the Sc₃N cluster, Sc1A with an occupancy of 0.712(4) is located on the mirror plane of the entire molecule, while Sc2A and its mirror image labeled as Sc3A with an equal occupancy of 0.444(3) are symmetrically situated in two sides of the cage. The minor Sc₃N site comprises Sc1B, Sc2B, and Sc3B with an occupancy of 0.218(2), 0.556(4), and 0.556(4), respectively (see Supporting Information, Figure S3a for its relative orientation to the major Sc₃N site). Interestingly, as clearly shown in Figure 2 illustrating the positions of three Sc

Figure 2. Position of the major Sc₃N site with respect to the nearest carbon atoms of the $C_{2\nu}(39718)$ - C_{82} cage. C, N, and Sc atoms are shown in gray, blue, and red, respectively.

atoms within the major Sc₃N site with respect to the neighboring portions of the C₈₂-C_{2v}(39718) cage, the three Sc atoms (Sc1A–Sc3A) are all located at the conjunctions of pentagons and hexagons. This is quite different to the case of the counterpart Gd₃N@C₈₂-C_s(39663) with a non-IPR egg-shaped cage containing one fused pentagon pair, within which the Gd1 atom (major site) is located under the pentalene fold while Gd2 and Gd3 were observed at the conjunction of pentagon/hexagon and under a pentagon, respectively.²⁰ The different locations of the encaged metal atoms within the C₈₂ cage suggest the difference in the cluster-cage interactions between Sc₃N@C₈₂ and Gd₃N@C₈₂ as predicted in a previous DFT computational study.¹²

For the major site of Sc3N cluster, the Sc1A–N1–Sc2A/ Sc3A and Sc2A–N1–Sc3A angles are 132.13(9)° and 95.23(7)°, respectively. Thus, the sum of these three angles about the central nitrogen atom is 359.49°, indicating that the encaged Sc₃N cluster is planar. This feature is similar to that for the Gd₃N cluster within Gd₃N@C₈₂-C_s(39663).²⁰ The Sc1A– N1 and Sc2A/Sc3A–N1 bond distances are 2.007(4) Å and 2.078(3) Å, respectively, and Sc1A–N distance is obviously shorter than those within Gd₃N@C₈₂-C_s(39663) (2.077(5), 2.094(5), 2.152(5) for the major Gd sites).²⁰ This result can be explained by the much smaller ionic radius of Sc³⁺ (0.75 Å) than that of Gd³⁺ (0.94 Å).²⁴ On the other hand, the averaged Sc–N distance based on Sc1A–N1 and Sc2A/Sc3A–N1 bond distances within Sc₃N@C₈₂-C_{2ν}(39718) is 2.054 Å, which is slightly smaller than that computed by DFT (2.062 Å).¹²

 C_{82} -based NCFs have been rarely reported and so far only four $M_3N@C_{82}$ (M = Y,¹³ Gd,²⁰ Dy,²⁵ Tm²⁶) NCFs have been isolated, among which only Gd₃N@C₈₂-C_s(39663) and Y₃N@C₈₂-C_s(39663) have been structurally characterized and share the same non-IPR C_{82} - $C_s(39663)$ isomeric cage.^{13,20} This is no wonder considering the relatively close ionic radii of Gd^{3+} (0.94 Å) and Y^{3+} (0.90 Å).²⁴ However, upon decreasing the size of the encaged metal from Y to Sc, Sc₃N@C₈₂ has a dramatic different isomeric cage structure of C_{82} - $C_{2\nu}(39718)$, revealing the strong dependence of the cage isomeric structure on the size of the encaged metal for C82-based NCFs. As already concluded in a previous comparative study of a series of C₈₀-based NCFs $M_3N@C_{80}$ (I_h , M = Sc, Y, Gd, Tb, Dy, Ho, Er, Tm), the much smaller ionic radius of Sc^{3+} (0.75 Å) than those of other rare earth metals resulted in weaker charge transfer from the Sc₃N cluster to the C₈₀ cage and consequently weaker cluster-cage interactions within $Sc_3N@C_{80}$ compared to those in other M₃N@C₈₀ NCFs. Despite such weaker cluster-cage interactions within $Sc_3N@C_{80}$, its cage isomeric structure $(C_{80}-I_h)$ remains same to those of other $M_3N@C_{80}$ NCFs.²¹ For the case of the C_{82} cage, the increase of the cage size leads to the weakening of the cluster-cage interactions within M3N@C82 NCFs and consequently induces more dramatic deviation of Sc3N@C82 from other M3N@C82 NCFs in terms of the stability order of the isomers as revealed in a previous DFT computational study of C₈₂-based NCFs by Popov and Dunsch.¹² Interestingly, DFT computations on Sc₃N@C₈₂ predicted that C_{82} - $C_{2\nu}$ (39718) was the most stable isomer but had a low kinetic stability as inferred from its small highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of 0.83 eV, thus the candidate for Sc₃N@C₈₂ was suggested to be the second most stable isomer, non-IPR C_{82} - $C_{2\nu}$ (39705), instead of C_{82} - $C_{2\nu}(39718)$.¹² Therefore, the successful isolation and unambiguous structural determination of Sc₃N@C₈₂- $C_{2\nu}(39718)$ in our present work unravels the long-lasting puzzle about its molecular structure and proves the possibility of isolating such a small-bandgap endohedral fullerene with low kinetic stability.

Furthermore, the dramatic difference on the isomeric cage structures of $Sc_3N@C_{82}-C_{2\nu}(39718)$ and $M_3N@C_{82}-C_s(39663)$ (M = Gd, Y) is consistent with that predicted by a previous DFT computational study.¹² Specifically, $Y_3N@C_{82}$ isomers exhibited significantly different stability order to that for $Sc_3N@C_{82}$, with $C_{82}-C_{2\nu}(39705)$ being the most stable isomer. However, it is the second most stable isomer, $C_{82}-C_s(39663)$, that was later confirmed to be the cage of the experimentally isolated $Y_3N@C_{82}$.^{12,13} Such a discrepancy between the experimentally determined isomeric structure with the computationally

predicted most stable one however does not exist for $Sc_3N @C_{82}$, confirming further the role of the encaged metal on the cage isomeric structure of C_{82} -based NCFs. Given that cages larger than C_{82} have been isolated for NCFs based on many lanthanide metals such as La, Gd, Dy, Tm etc.,^{25–28} it remains an open question whether Sc-based NCFs with cages larger than C_{82} follows the similar dependence or not. We expect that our present work will stimulate such interesting studies.

Electronic Absorption Spectroscopic Study of Sc₃N@C₈₂. The UV–vis–NIR absorption spectrum of the isolated Sc₃N@C₈₂- $C_{2\nu}$ (39718) dissolved in toluene is presented in Figure 3. The electronic absorption spectrum of Sc₃N@C₈₂

Figure 3. UV–vis–NIR spectrum of $Sc_3N \oslash C_{2\nu}(39718)$ dissolved in toluene. Insets: enlarged spectral region (500–1200 nm) and the photograph of sample in toluene.

exhibits two broad shoulder peaks at about 341 and 465 nm along with one clearly discernible broad peak with the absorption maximum at about 642 nm in the UV and visible regions. Besides, an additional weak broad shoulder absorption peak appears at about 908 nm in the NIR region. Because of such a unique electronic absorption feature, $Sc_3N @C_{82}$ solution in toluene is green (see inset of Figure 3). The electronic absorption feature of $Sc_3N@C_{82}-C_{2\nu}(39718)$ is apparently different from that of $Gd_3N@C_{82}-C_s(39663)$ which exhibits four broad shoulder absorption peaks (343, 386, 501, 643 nm) in the visible region only.²⁰ The obvious difference in the electronic absorption properties between Sc₃N@C₈₂- $C_{2\nu}(39718)$ and $Gd_3N@C_{82}-C_s(39663)$ can be easily understood by their discrepancy on the cage isomeric structure since the electronic absorptions of fullerenes are predominantly due to $\pi - \pi^*$ carbon cage transitions and primarily depend on the isomeric structure and charge state of the carbon cage.^{1,7} More strikingly, the optical bandgap of $Sc_3N@C_{82}-C_{2\nu}(39718)$ estimated from its absorption spectral onset of ca. 1696 nm (see Supporting Information, Figure S4) is 0.73 eV, which is again significantly smaller than that of Gd₃N@C₈₂-C_s(39663).²⁰ Besides, the optical band gap of $Sc_3N@C_{82}-C_{2\nu}(39718)$ is also much smaller than those of the other reported members of the Sc-based NCF family including $Sc_3N@C_{2n}$ (2n = 68, 70, 78, 80) which are all not lower than 1.0 eV (see Supporting Information, Table S3).^{16–19} Such a small optical bandgap of Sc₃N@C₈₂- $C_{2\nu}(39718)$ confirms its low kinetic stability as predicted by DFT computation¹¹ and explains the difficulty in its isolation as the long-sought member of the Sc-based NCF family. To evaluate the thermal stability of Sc3N@C82, we heated a

 $Sc_3N@C_{82}$ solution in reflux toluene under ambient condition and detected the peak intensity by HPLC, and found that, while the peak intensity of $Sc_3N@C_{82}$ remained unchanged under heating at 150 °C for 90 min, it decreased obviously under heating at 180 °C for 90 min, suggesting its decomposition at this temperature. However, a similar heating treatment of $Sc_3N@C_{80}$ solution in reflux toluene revealed that its HPLC peak intensity remained unchanged under heating at 180 °C for 90 min, confirming its higher thermal stability than $Sc_3N@C_{82}$ (see Supporting Information, Figure S5).

Electrochemical Study of Sc₃N@C₈₂. Figure 4 presents a typical cyclic voltammogram of Sc₃N@C₈₂- $C_{2\nu}(39718)$ meas-

Figure 4. Cyclic voltammogram of $Sc_3N@C_{82}-C_{2\nu}(39718)$ in *o*-DCB solution with ferrocene (Fc) as the internal standard and TBAPF₆ as the supporting electrolyte. Scan rate, 100 mV/s. The letters A and B mark the oxidation peaks and their corresponding rereduction peaks are marked by A', B'. The oxidation and rereduction peaks of ferrocene (Fc) coincidentally overlap with peaks A and A', respectively. Letters C–F label the first to fourth reduction peaks and their corresponding reoxidation peaks are labeled by C'-F' and C''.

ured in o-dichlorobenzene (o-DCB) with tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte. The characteristic redox potentials are summarized in Supporting Information, Table S4, which also includes those of $Gd_3N @C_{82}$ - $C_s(39663)^{29}$ for comparison. In the anodic region, Sc₃N@C₈₂- $C_{2\nu}(39718)$ exhibits two reversible oxidation steps with halfwave potentials $(E_{1/2})$ at 0, 0.37 V, respectively. Such oxidation behavior is obviously different from that of Gd₃N@C₈₂- $C_s(39663)$ with only one reversible oxidation step $(E_{1/2,\text{ox}} = 0.37 \text{ V})$.²⁹ The more negative first oxidation potential of $Sc_3N@C_{82}-C_{2\nu}(39718)$ compared to that of $Gd_3N@C_{82}$ - $C_s(39663)$ suggests its stronger electron-donating ability. On the other hand, in the cathode region, $Sc_3N@C_{82}-C_{2\nu}(39718)$ shows a complex reduction behavior with up to four reduction steps. While the first reduction step of $Sc_3N@C_{82}-C_{2\nu}(39718)$ was distinctly irreversible with a peak potential (E_p) at -1.35 V, which is positively shifted compared to that of Gd₃N@C₈₂- $C_s(39663)$ (-1.52 V),²⁹ the second-fourth reduction steps become more reversible with half-wave potentials $(E_{1/2, \text{ red}})$ at -1.52, -1.78, and -2.18 V, respectively. Again, the reduction behavior of Sc₃N@C₈₂-C_{2 ν}(39718) is obviously different from that of $Gd_3N@C_{82}$ - $C_s(39663)$ which shows only two reduction steps.²⁸ The electrochemical gap $(E_{gap,ec})$, derived from the distinct discrepancy of the redox behavior specifically of the first oxidation and reduction potentials between Sc3N@C82- $C_{2\nu}(39718)$ and $Gd_3N@C_{82}-C_s(39663)$, shows quite a large

difference (0.54 V, see Supporting Information, Table S4). This is consistent with the difference in their optical bandgap of the structures as discussed above and can be attributed to their discrepancy in the cage isomeric structure.

In summary, we have successfully synthesized and isolated the long-sought Sc3N@C82 for the first time, which has been claimed in several theoretical studies to have low kinetic stability precluding its isolation. The molecular structure of Sc₃N@C₈₂ has been unambiguously determined as $Sc_3N@C_{82}-C_{2\nu}(39718)$ by single crystal X-ray diffraction, ruling out the isomeric structure of non-IPR C_{82} - $C_{2\nu}(39705)$ previously predicted by DFT computations. The determined C_{82} - $C_{2\nu}(39718)$ isomeric cage of Sc₃N@C₈₂ follows IPR and is consistent with its DFTpredicted most stable isomer, but is dramatically different from those of the reported analogous NCFs M₃N@C₈₂-C_s(39663) (M = Gd, Y) based on a non-IPR C_{82} isomer, revealing the strong dependence of cage isomeric structure on the size of the encaged metal for C82-based NCFs. The optical bandgap of $Sc_3N@C_{82}-C_{2\nu}(39718)$ estimated from a UV-vis-NIR spectroscopic study is 0.73 eV, much smaller than those of $Gd_3N@C_{82}$ - $C_s(39663)$ and $Sc_3N@C_{2n}$ (2n = 68, 70, 78, 80), confirming its relatively low kinetic stability resulting in the difficulty in its isolation. A cyclic voltammetric study of $Sc_3N@C_{82}-C_{2\nu}(39718)$ reveals a complex redox behavior which is dramatically different from that of $Gd_3N@C_{82}-C_s(39663)$. Our success in the first isolation of $Sc_3N@C_{82}$ unravels the long-lasting puzzle about its molecular structure, and will stimulate further study on such seemingly unstable endohedral fullerenes toward deeper understanding of the dependence of the stability of endohedral fullerene on its cage isomeric structure.

EXPERIMENTAL METHODS

Synthesis and Isolation of $Sc_3N@C_{82}-C_{2\nu}(39718)$. The synthesis of $Sc_3N@C_{82}-C_{2\nu}(39718)$ by a modified Krätschmer–Huffman DC-arc discharging method involving N₂ gas follows the similar procedures of synthesizing other Sc-based NCFs reported previously.¹⁵ The produced soot was collected and Soxhlet-extracted by CS₂ for 24 h. The resulting brown-yellow solution was distilled to remove CS₂ and then immediately redissolved in toluene and subsequently passed through a 0.2 μ m Telflon filter (Sartorius AG, Germany) for HPLC separation. Isolation of $Sc_3N@C_{82}$ was performed by three-step HPLC as described in details in Supporting Information S1. The purity of the isolated $Sc_3N@C_{82}$ was further checked by LD-TOF MS (Biflex III, Bruker Daltonics Inc., Germany).

Spectroscopic and Electrochemical Study of Sc₃N@C₈₂- $C_{2\nu}$ (39718). UV-vis-NIR spectra were recorded on a UV-vis-NIR 3600 spectrometer (Shimadzu, Japan) using a quartz cell of 1 mm layer thickness and 1 nm resolution with the samples dissolved in toluene. An electrochemical study of Sc₃N@C₈₂-C_{2 ν}(39718) was performed in o-dichlorobenzene (o-DCB, anhydrous, 99%, Aldrich). The supporting electrolyte was tetrabutylammonium hexafluorophosphate (TBAPF6, puriss. electrochemical grade, Fluka) which was dried under reduced pressure at 340 K for 24 h and stored in glovebox prior to use. Cyclic voltammogram experiments were performed with a CHI 660 potentiostat (CHI Instrument, U.S.A.) at room temperature in a glovebox. A standard three-electrode arrangement of a platinum (Pt) wire as working electrode, a platinum coil as counter electrode, and a silver wire as a pseudoreference electrode was used. In a comparison experiment, ferrocene (Fc) was added as the internal standard and all potentials are referred to the Fc/Fc⁺ couple.

X-ray Crystallographic Study of Sc₃N@C₈₂-C_{2v}(39718). Crystal growth of Sc₃N@C₈₂-C_{2v}(39718)·Ni^{II}(OEP)·2C₆H₆ was accomplished by layering a solution of 1 mg Ni^{II}(OEP) in 1 mL of benzene over a solution of ca. 2 mg of Sc₃N@C₈₂-C_{2v}(39718) in 2 mL of carbon

disulfide. X-ray diffraction data collection for the crystal of Sc₃N@C₈₂· Ni^{II}(OEP)·2C₆H₆ (0.1 × 0.08 × 0.06 mm³) was carried out at 100 K on an Agilent Supernova diffractometer (Agilent Technologies, U.S.A.) with a Cu radiation (λ = 1.54178 Å). Sc₃N@C₈₂·Ni^{II}(OEP)·2C₆H₆ crystallizes in the monoclinic space group C2/*m*, *a* = 25.2209(5) Å, *b* = 15.1985(3) Å, *c* = 19.9181(4) Å, β = 94.772(2)°, *V* = 7608.5(3) Å³, *Z* = 4. A numerical absorption correction utilizing equivalents was employed. The structure was solved by direct methods and refined using all data (based on F²) by SHELX 97.³⁰ Hydrogen atoms were located in a difference map, added geometrically, and refined with a riding model. Refinement of 7517 reflections, 1034 parameters, and 1075 restraints yielded wR2 = 0.2034 for all data and a conventional R1 of 0.0721 based on 6807 reflections with *I* > 2 σ (*I*). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre with CCDC No. 1034177.

ASSOCIATED CONTENT

Supporting Information

Isolation of Sc₃N@C₈₂-C_{2ν}(39718); estimation of the relative yield of Sc₃N@C₈₂; X-ray crystallographic data of Sc₃N@C₈₂- $C_{2ν}$ (39718); UV–vis–NIR spectrum of Sc₃N@C₈₂ in CS₂ solution; thermal stability of Sc₃N@C₈₂ vs Sc₃N@C₈₀-*I_h*; cyclic voltammograms of Sc₃N@C₈₂-C_{2ν}(39718) in different scanning regions; and X-ray crystallographic files in CIF formats etc. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

sfyang@ustc.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 21132007, 2137116), National Basic Research Program of China (Grant No. 2011CB921400) (to S.F.Y.), the 973 project (2014CB845601) and the National Natural Science Foundation of China (Grant No. U1205111) (to S.Y.X.).

REFERENCES

(1) For recent reviews, see (a) Yang, S. F., Wang, C. R. Endohedral Fullerenes: From Fundamentals to Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2014. (b) Popov, A. A.; Yang, S. F.; Dunsch, L. Chem. Rev. 2013, 113, 5989. (c) Wang, T. S.; Wang, C. R. Acc. Chem. Res. 2014, 47, 450. (d) Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Chem. Soc. Rev. 2012, 41, 7723. (e) Yang, S. F. Curr. Org. Chem. 2012, 16, 1079. (f) Rodriguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Chem. Soc. Rev. 2011, 40, 3551. (g) Yang, S. F.; Liu, F. P.; Chen, C. B.; Jiao, M. Z.; Wei, T. Chem. Commun. 2011, 47, 11822. (h) Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L. Angew. Chem., Int. Ed. 2009, 48, 7514.

(2) Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L.; Alford, G. M.; Smalley, R. E. *J. Phys. Chem.* **1991**, *95*, 7564.

(3) (a) Xu, W.; Niu, B.; Feng, L.; Shi, Z.; Lian, Y. *Chem.—Eur. J.* **2012**, *18*, 14246. (b) Yang, H.; Jin, H.; Wang, X.; Liu, Z.; Yu, M.; Zhao, F.; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. *J. Am. Chem. Soc.* **2012**, *134*, 14127. (c) Suzuki, M.; Slanina, Z.; Mizorogi, N.; Lu, X.; Nagase, S.; Olmstead, M. M.; Balch, A. L.; Akasaka, T. *J. Am. Chem. Soc.* **2012**, *134*, 18772.

(4) (a) Lu, X.; Nakajima, K.; Iiduka, Y.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. *J. Am. Chem. Soc.* **2011**, *133*, 19553. (b) Zhang, J.; Fuhrer, T.; Fu, W.; Ge, J.; Bearden, D. W.; Dallas, J.; Duchamp, J. C.; Walker, K. L.; Champion, H.; Azurmendi, H. F.; Harich, K.; Dorn, H. C. *J. Am. Chem. Soc.* **2012**, 134, 8487. (c) Wang, C.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. Angew. Chem., Int. Ed. 2001, 46, 397.

(5) Dunsch, L.; Yang, S.; Zhang, L.; Svitova, A.; Oswald, S.; Popov, A. A. J. Am. Chem. Soc. **2010**, 132, 5413.

(6) (a) Yang, S. F.; Chen, C. B.; Liu, F. P.; Xie, Y. P.; Li, F. Y.; Jiao, M. Z.; Suzuki, M.; Wei, T.; Wang, S.; Chen, Z. F.; Lu, X.; Akasaka, T. *Sci. Rep.* **2013**, *3*, 1487. (b) Liu, F.; Wang, S.; Guan, J.; Wei, T.; Zeng, M.; Yang, S. *Inorg. Chem.* **2014**, *53*, 5201.

(7) (a) Zhang, J. Y.; Stevenson, S.; Dorn, H. C. Acc. Chem. Res. 2013, 46, 1548. (b) Dunsch, L.; Yang, S. F. Small 2007, 3, 1298. (c) Dunsch, L.; Yang, S. F. Phys. Chem. Chem. Phys. 2007, 9, 3067.

(8) (a) Stevenson, S.; Mackey, M. A.; Pickens, J. E.; Stuart, M. A.; Confait, B. S.; Phillips, J. P. *Inorg. Chem.* **2009**, *48*, 11685. (b) Mercado, B. Q.; Stuart, M. A.; Mackey, M. A.; Picken, J. E.s; Confait, B. S.; Stevenson, S.; Easterling, M. L.; Valencia, R.; Rodriguez-Fortea, A.; Poblet, J. M.; Olmstead, M. M.; Balch, A. L. *J. Am. Chem. Soc.* **2010**, *132*, 12098.

(9) Svitova, A. L.; Popov, A. A.; Dunsch, L. Inorg. Chem. 2013, 52, 3368.

(10) Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. *Nature* **1999**, *401*, 55.

(11) Fowler, P.; Manolopoulos, D. E. *An Atlas of Fullerenes*; Clarendon Press: Oxford, U.K., 1995.

(12) Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129, 11835.

(13) Fu, W. J.; Xu, L. S.; Azurmendi, H.; Ge, J. C.; Fuhrer, T.; Zuo, T. M.; Reid, J.; Shu, C. Y.; Harich, K.; Dorn, H. C. J. Am. Chem. Soc. 2009, 131, 11762.

(14) Campanera, J. M.; Bo, C.; Poblet, J. M. Angew. Chem., Int. Ed. 2005, 44, 7230.

(15) Yang, S. F.; Chen, C. B.; Popov, A. A.; Zhang, W. F.; Liu, F. P.; Dunsch, L. Chem. Commun. **2009**, 6391.

(16) (a) Stevenson, S.; Fowler, P. W.; Heine, T.; Duchamp, J. C.; Ric e, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. *Nature* **2000**, 408, 427. (b) Olmstead, M. M.; Lee, H. M.; Dunchamp, J. C.; Sevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. *Angew. Chem., Int. Ed.* **2003**, 115, 928.

(17) Yang, S. F.; Popov, A. A.; Dunsch, L. Angew. Chem., Int. Ed. 2007, 46, 1256.

(18) Olmstead, M. H.; Bettencourt-Dias, A. de; Duchamp, J. C.; Stevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. Angew. Chem., Int. Ed. 2001, 40, 1223.

(19) Krause, M.; Dunsch, L. ChemPhysChem 2004, 5, 1445.

(20) Mercado, B. Q.; Beavers, C. M.; Olmstead, M. M.; Chaur, M. N.; Walker, K.; Holloway, B. C.; Echegoyen, L.; Balch, A. L. J. Am. Chem. Soc. 2008, 130, 7854.

(21) Yang, S. F.; Troyanov, S. I.; Popov, A. A.; Krause, M.; Dunsch, L. J. Am. Chem. Soc. **2006**, 128, 16733.

(22) Zuo, T.; Olmstead, M. M.; Beavers, C. M.; Balch, A. L.; Wang, G.; Yee, G. T.; Shu, C.; Xu, L.; Elliott, B.; Echegoyen, L.; Duchamp, J. C.; Dorn, H. C. *Inorg. Chem.* **2008**, *47*, 5234.

(23) (a) Beavers, C. M.; Chaur, M. N.; Olmstead, M. M.; Echegoyen, L.; Balch, A. L. J. Am. Chem. Soc. 2009, 131, 11519. (b) Zuo, T. M.; Beavers, C. M.; Duchamp, J. C.; Campbell, A.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2007, 129, 2035.

(24) Greenwood, N. N., Earnshaw, A. Chemistry of the Elements; Pergamon: Oxford, 1984.

(25) Yang, S. F.; Dunsch, L. J. Phys. Chem. B 2005, 109, 12320.

(26) Krause, M.; Wong, J.; Dunsch, L. *Chem.—Eur. J.* **2005**, *11*, 706. (27) Chaur, M. N.; Melin, F.; Ashby, J.; Elliott, B.; Kumbhar, A.; Rao,

A. M.; Echegoyen, L. Chem.-Eur. J. 2008, 14, 8213.

(28) Krause, M.; Dunsch, L. Angew. Chem., Int. Ed. 2005, 44, 1557.

(29) Chaur, M. N.; Athans, A. J.; Echegoyen, L. Tetrahedron 2008, 64, 11387.

(30) Sheldrick, G. Acta Crystallogr. A 2008, 64, 112.